How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production?

Sci Total Environ. 2022 Jan 10:803:149933. doi: 10.1016/j.scitotenv.2021.149933. Epub 2021 Aug 27.

Abstract

To ensure global food security, agriculture must increase productivity while reducing environmental impacts associated with chemical nitrogen (N) fertilisation. This necessitates towards more sustainable practices such as recycling organic waste to substitute chemical fertiliser N inputs. However, hitherto how such strategy controls the succession of microbial communities and their relationship with crop yields and environmental impacts have not been comprehensively investigated. We conducted a field experiment with vegetable production in China examining partial substitution (25-50%) of chemical fertiliser with organic forms (pig manure or municipal sludge compost) considering key sustainability metrics: productivity, soil health, environmental impacts and microbial communities. We demonstrate that partial organic substitution improved crop yields, prevented soil acidification and improved soil fertility. Treatments also reduced detrimental environmental impacts with lower N2O emission, N leaching and runoff, likely due to reduced inorganic nitrogen surplus. Microbial communities, including key genes involved in the N cycle, were dynamic and time-dependent in response to partial organic substitution, and were also important in regulating crop yields and environmental impacts. Partial organic substitution increased bacterial diversity and the relative abundance of several specific microbial groups (e.g. Sphingomonadales, Myxococcales, Planctomycetes, and Rhizobiales) involved in N cycling. Additionally, partial organic substitution reduced the number of bacterial ammonia oxidizers and increased the number of denitrifiers, with the proportion of N2O-reducers being more pronounced, suggesting a mechanism for reducing N2O emissions. Comprehensive economic cost-benefit evaluation showed that partial organic substitution increased economic benefit per unit area by 37-46%, and reduced agricultural inputs and environmental impacts per unit product by 22-44%. Among them, 50% substitution of pig manure was the most profitable strategy. The study is crucial to policy-making as it highlights the potential advantages of shifting towards systems balancing chemical and organic fertilisers with economic benefits for farmers, reduced environmental damage and an efficient way for organic waste disposal.

Keywords: Microbial nitrogen cycling; Partial organic substitution; Reactive nitrogen losses; Reduce environmental impact; Yield.

MeSH terms

  • Agriculture*
  • Animals
  • Fertilizers* / analysis
  • Manure
  • Nitrogen
  • Soil
  • Swine

Substances

  • Fertilizers
  • Manure
  • Soil
  • Nitrogen