Visualizing the {110} surface structure of equilibrium-form ZIF-8 crystals by low-dose Cs-corrected TEM

Nanoscale. 2021 Aug 21;13(31):13215-13219. doi: 10.1039/d1nr03829j. Epub 2021 Jul 27.

Abstract

The properties of zeolitic imidazolate framework (ZIF) crystals highly depend on the structures of the low-energy surfaces, such as {110} of ZIF-8. However, the atomic/molecular configurations of the ZIF-8 {110} surfaces remain debated. In this study, the near-atomic-scale characterization of {110} surfaces of ZIF-8 is conducted by low-dose aberration-corrected transmission electron microscopy (TEM). The real-space images with mitigated surface delocalization by minimized spherical aberration of TEM, together with the solvent corrected surface energy calculations, demonstrate that the {110} surfaces of ZIF-8 crystals with an equilibrium-form rhombic morphology have a zigzag-type termination. This study provides experimental evidence to clarify the debated structure of {110} ZIF-8 surfaces and has important implications in understanding the crystal growth and surface related properties of ZIF-8.