Highly Transparent, Dual-Color Emission, Heterophase Cs3Cu2I5/CsCu2I3 Nanolayer for Transparent Luminescent Solar Concentrators

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40798-40805. doi: 10.1021/acsami.1c07686. Epub 2021 Aug 17.

Abstract

Transparent luminescent solar concentrators (TLSCs) have been attracting wide attentions for their applications in transparent photovoltaic (PV) windows, smart greenhouses, and mobile electronics on account of the simple architecture and low-cost preparation. We report a novel strategy to fabricate TLSCs using the heterophase lead-free perovskites. The heterophase nanolayered films which combined CsCu2I3 and Cs3Cu2I5 were prepared in one step using a dual-source coevaporation technique. The CsCu2I3/Cs3Cu2I5 films exhibited UV light absorption, a high average visible transmission (AVT) of 86.70%, and dual-color white emission between 350 and 760 nm. Importantly, the TLSCs incorporated with the CsCu2I3/Cs3Cu2I5 films exhibited an impressive optical conversion efficiency of 1.15% under keeping a high AVT of 86.70%. Meanwhile, the TLSCs incorporated with the heterophase films showed considerable stability under ambient conditions. The CIE 1960 color coordinates (0.2082, 0.4680) of the TLSCs incorporated with the CsCu2I3/Cs3Cu2I5 films showed excellent aesthetic quality as compared with those of the TLSCs incorporated with lead-based perovskites. Our finding offers a strategy to prepare lead-free metal halides toward high-performance TLSCs and future transparent PV windows.

Keywords: Cs3Cu2I5; CsCu2I3; lead-free perovskite; luminescent solar concentrators; transparent photovoltaic.