Comparative Analysis of Bile-Salt Degradation in Sphingobium sp. Strain Chol11 and Pseudomonas stutzeri Strain Chol1 Reveals Functional Diversity of Proteobacterial Steroid Degradation Enzymes and Suggests a Novel Pathway for Side Chain Degradation

Appl Environ Microbiol. 2021 Oct 28;87(22):e0145321. doi: 10.1128/AEM.01453-21. Epub 2021 Sep 1.

Abstract

The reaction sequence for aerobic degradation of bile salts by environmental bacteria resembles degradation of other steroid compounds. Recent findings show that bacteria belonging to the Sphingomonadaceae use a pathway variant for bile-salt degradation. This study addresses this so-called Δ4,6-variant by comparative analysis of unknown degradation steps in Sphingobium sp. strain Chol11 with known reactions found in Pseudomonas stutzeri Chol1. Investigations of strain Chol11 revealed an essential function of the acyl-CoA dehydrogenase (ACAD) Scd4AB for growth with bile salts. Growth of the scd4AB deletion mutant was restored with a metabolite containing a double bond within the side chain which was produced by the Δ22-ACAD Scd1AB from P. stutzeri Chol1. Expression of scd1AB in the scd4AB deletion mutant fully restored growth with bile salts, while expression of scd4AB only enabled constricted growth in P. stutzeri Chol1 scd1A or scd1B deletion mutants. Strain Chol11 Δscd4A accumulated hydroxylated steroid metabolites which were degraded and activated with coenzyme A by the wild type. Activities of five Rieske type monooxygenases of strain Chol11 were screened by heterologous expression and compared to the B-ring cleaving KshABChol1 from P. stutzeri Chol1. Three of the Chol11 enzymes catalyzed B-ring cleavage of only Δ4,6-steroids, while KshABChol1 was more versatile. Expression of a fourth KshA homolog, Nov2c228, led to production of metabolites with hydroxylations at an unknown position. These results indicate functional diversity of proteobacterial enzymes for bile-salt degradation and suggest a novel side chain degradation pathway involving an essential ACAD reaction and a steroid hydroxylation step. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds in different aspects. First, it further elucidates an unexplored variant in the degradation of bile-salt side chains by sphingomonads, a group of environmental bacteria that is well-known for their broad metabolic capabilities. Moreover, it adds a so far unknown hydroxylation of steroids to the reactions Rieske monooxygenases can catalyze with steroids. Additionally, it analyzes a proteobacterial ketosteroid-9α-hydroxylase and shows that this enzyme is able to catalyze side reactions with nonnative substrates.

Keywords: Pseudomonas; Sphingobium; bile salt; degradation; steroids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyl-CoA Dehydrogenase / metabolism*
  • Bacterial Proteins / metabolism
  • Bile Acids and Salts / metabolism*
  • Mixed Function Oxygenases / metabolism*
  • Pseudomonas stutzeri* / enzymology
  • Pseudomonas stutzeri* / genetics
  • Sphingomonadaceae* / enzymology
  • Sphingomonadaceae* / genetics
  • Steroids / metabolism*

Substances

  • Bacterial Proteins
  • Bile Acids and Salts
  • Steroids
  • Mixed Function Oxygenases
  • Acyl-CoA Dehydrogenase