Fixed-Time Adaptive Neural Network Control for Nonlinear Systems With Input Saturation

IEEE Trans Neural Netw Learn Syst. 2023 Apr;34(4):1911-1920. doi: 10.1109/TNNLS.2021.3105664. Epub 2023 Apr 4.

Abstract

This study concentrates on the tracking control problem for nonlinear systems subject to actuator saturation. To improve the performance of the controller, we propose a fixed-time tracking control scheme, in which the upper bound of the convergence time is independent of the initial conditions. In the control scheme, first, a smooth nonlinear function is employed to approximate the saturation function so that the controller can be designed under the framework of backstepping. Then, the effect of input saturation is compensated by introducing an auxiliary system. Furthermore, a fixed-time adaptive neural network control method is given with the help of fixed-time control theory, in which the dynamic order of controllers is reduced to a certain extent since there is only one updating law in the entire control design. Through rigorous theoretical analysis, it is concluded that the proposed control scheme can guarantee that: 1) the output tracking error can converge to a small neighborhood near the origin in a fixed time and 2) all signals in the closed-loop system are bounded. Finally, a numerical example and a practical example based on the single-link manipulator are provided to verify the effectiveness of the proposed method.