Zig-Zag Based Single-Pass Connected Components Analysis

J Imaging. 2019 Apr 6;5(4):45. doi: 10.3390/jimaging5040045.

Abstract

Single-pass connected components analysis (CCA) algorithms suffer from a time overhead to resolve labels at the end of each image row. This work demonstrates how this overhead can be eliminated by replacing the conventional raster scan by a zig-zag scan. This enables chains of labels to be correctly resolved while processing the next image row. The effect is faster processing in the worst case with no end of row overheads. CCA hardware architectures using the novel algorithm proposed in this paper are, therefore, able to process images at higher throughput than other state-of-the-art methods while reducing the hardware requirements. The latency introduced by the conversion from raster scan to zig-zag scan is compensated for by a new method of detecting object completion, which enables the feature vector for completed connected components to be output at the earliest possible opportunity.

Keywords: FPGA; connected components analysis; feature extraction; hardware architecture; pipeline; stream processing; zig-zag scan.