Color Photometric Stereo Using Multi-Band Camera Constrained by Median Filter and Occluding Boundary

J Imaging. 2019 Jul 16;5(7):64. doi: 10.3390/jimaging5070064.

Abstract

One of the main problems faced by the photometric stereo method is that several measurements are required, as this method needs illumination from light sources from different directions. A solution to this problem is the color photometric stereo method, which conducts one-shot measurements by simultaneously illuminating lights of different wavelengths. However, the classic color photometric stereo method only allows measurements of white objects, while a surface-normal estimation of a multicolored object using this method is theoretically impossible. Therefore, it is necessary to add some constraints to estimate the surface normal of a multicolored object using the framework of the color photometric stereo method. In this study, a median filter is employed as the constraint condition of albedo, and the surface normal of the occluding boundary is employed as the constraint condition of the surface normal. By employing a median filter as the constraint condition, the smooth distribution of the albedo and normal is calculated while the sharp features at the boundary of different albedos and normals are preserved. The surface normal at the occluding boundary is propagated into the inner part of the object region, and forms the abstract shape of the object. Such a surface normal gives a great clue to be used as an initial guess to the surface normal. To demonstrate the effectiveness of this study, a measurement device that can realize the multispectral photometric stereo method with seven colors is employed instead of the classic color photometric stereo method with three colors.

Keywords: color photometric stereo; multispectral imaging; photometric stereo.