An Overview on the Novel Core-Shell Electrodes for Solid Oxide Fuel Cell (SOFC) Using Polymeric Methodology

Polymers (Basel). 2021 Aug 18;13(16):2774. doi: 10.3390/polym13162774.

Abstract

Lowering the interface charge transfer, ohmic and diffusion impedances are the main considerations to achieve an intermediate temperature solid oxide fuel cell (ITSOFC). Those are determined by the electrode materials selection and manipulating the microstructures of electrodes. The composite electrodes are utilized by a variety of mixed and impregnation or infiltration methods to develop an efficient electrocatalytic anode and cathode. The progress of our proposed core-shell structure pre-formed during the preparation of electrode particles compared with functional layer and repeated impregnation by capillary action. The core-shell process possibly prevented the electrocatalysis decrease, hindering and even blocking the fuel gas path through the porous electrode structure due to the serious agglomeration of impregnated particles. A small amount of shell nanoparticles can form a continuous charge transport pathway and increase the electronic and ionic conductivity of the electrode. The triple-phase boundaries (TPBs) area and electrode electrocatalytic activity are then improved. The core-shell anode SLTN-LSBC and cathode BSF-LC configuration of the present report effectively improve the thermal stability by avoiding further sintering and thermomechanical stress due to the thermal expansion coefficient matching with the electrolyte. Only the half-cell consisting of 2.75 μm thickness thin electrolyte iLSBC with pseudo-core-shell anode LST could provide a peak power of 325 mW/cm2 at 700 °C, which is comparable to other reference full cells' performance at 650 °C. Then, the core-shell electrodes preparation by simple chelating solution and cost-effective one process has a potential enhancement of full cell electrochemical performance. Additionally, it is expected to apply for double ions (H+ and O2-) conducting cells at low temperature.

Keywords: core-shell structure; diffusion impedance; electrode electrocatalytic activity; interface charge transfer impedance; intermediate temperature solid oxide fuel cell; triple-phase boundaries.

Publication types

  • Review