Phytomolecules Repurposed as Covid-19 Inhibitors: Opportunity and Challenges

Curr Microbiol. 2021 Oct;78(10):3620-3633. doi: 10.1007/s00284-021-02639-x. Epub 2021 Aug 26.

Abstract

The SARS-CoV-2 virus has spread worldwide to cause a full blown pandemic since 2020. To date, several promising synthetic therapeutics are repurposed and vaccines through different stages of clinical trials were approved and being administered, but still the efficacy of the drugs and vaccines are yet to be decoded. This article highlights the importance of traditional medicinal plants and the phytomolecules derived from them, which possess in vitro antiviral and anti-CoV properties and further explores their potential as inhibitors to molecular targets of SARS-CoV-2 that were evaluated by in silico approaches. Botanicals in traditional medicinal systems have been investigated for anti-SARS-CoV-2 activity through in silico and in vitro studies. However, information linking structure of phytomolecules to their antiviral activity is limited. Most phytomolecules with anti-CoV activity were studied for inhibition of the human ACE2 receptor through which the virus enters host cells, and non-structural proteins 3CLpro and PLpro. Although the proteases are ideal anti-CoV targets, information on plant-based inhibitors for the CoV structural proteins, e.g., spike, envelope, membrane, nucleocapsid required further investigations. In absence of scientific evaluations through in vitro and biocompatibility studies, plant-based antivirals fall short as treatment options. Plant-based anti-SARS-CoV-2 therapeutics can be promising alternatives to their synthetic counterparts as they are economical and bear fewer chances of toxicity, side effects, and viral resistance. Our review could provide a systematic overview of the potential phytomolecules which can be repurposed and subjected to further modes of experimental evaluation to qualify for use in treatment and prophylaxis of SARS-CoV-2 infections.

Publication types

  • Review

MeSH terms

  • Antiviral Agents / pharmacology
  • COVID-19*
  • Humans
  • Pandemics
  • SARS-CoV-2

Substances

  • Antiviral Agents