Effects of Mullite, Maghemite, and Silver Nanoparticles Incorporated in β-Wollastonite on Tensile Strength, Magnetism, Bioactivity, and Antimicrobial Activity

Materials (Basel). 2021 Aug 18;14(16):4643. doi: 10.3390/ma14164643.

Abstract

β-wollastonite (βW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized βW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce β wollastonite composite (βWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the βWMAF increased the tensile strength compared to βW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the β-wollastonite and βWMAF were characterized. βW and βWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, βWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.

Keywords: bioactivity; maghemite; mullite; silver; β-wollastonite.