Residual-Shuffle Network with Spatial Pyramid Pooling Module for COVID-19 Screening

Diagnostics (Basel). 2021 Aug 19;11(8):1497. doi: 10.3390/diagnostics11081497.

Abstract

Since the start of the COVID-19 pandemic at the end of 2019, more than 170 million patients have been infected with the virus that has resulted in more than 3.8 million deaths all over the world. This disease is easily spreadable from one person to another even with minimal contact, even more for the latest mutations that are more deadly than its predecessor. Hence, COVID-19 needs to be diagnosed as early as possible to minimize the risk of spreading among the community. However, the laboratory results on the approved diagnosis method by the World Health Organization, the reverse transcription-polymerase chain reaction test, takes around a day to be processed, where a longer period is observed in the developing countries. Therefore, a fast screening method that is based on existing facilities should be developed to complement this diagnosis test, so that a suspected patient can be isolated in a quarantine center. In line with this motivation, deep learning techniques were explored to provide an automated COVID-19 screening system based on X-ray imaging. This imaging modality is chosen because of its low-cost procedures that are widely available even in many small clinics. A new convolutional neural network (CNN) model is proposed instead of utilizing pre-trained networks of the existing models. The proposed network, Residual-Shuffle-Net, comprises four stacks of the residual-shuffle unit followed by a spatial pyramid pooling (SPP) unit. The architecture of the residual-shuffle unit follows an hourglass design with reduced convolution filter size in the middle layer, where a shuffle operation is performed right after the split branches have been concatenated back. Shuffle operation forces the network to learn multiple sets of features relationship across various channels instead of a set of global features. The SPP unit, which is placed at the end of the network, allows the model to learn multi-scale features that are crucial to distinguish between the COVID-19 and other types of pneumonia cases. The proposed network is benchmarked with 12 other state-of-the-art CNN models that have been designed and tuned specially for COVID-19 detection. The experimental results show that the Residual-Shuffle-Net produced the best performance in terms of accuracy and specificity metrics with 0.97390 and 0.98695, respectively. The model is also considered as a lightweight model with slightly more than 2 million parameters, which makes it suitable for mobile-based applications. For future work, an attention mechanism can be integrated to target certain regions of interest in the X-ray images that are deemed to be more informative for COVID-19 diagnosis.

Keywords: COVID-19 screening; X-ray imaging; convolutional neural networks; lightweight model.