Low KIBRA Expression Is Associated with Poor Prognosis in Patients with Triple-Negative Breast Cancer

Medicina (Kaunas). 2021 Aug 18;57(8):837. doi: 10.3390/medicina57080837.

Abstract

Background and Objectives: Kidney and brain protein (KIBRA) is a protein encoded by the WW and C2 domain containing 1 (WWC1) gene and is involved in the Hippo signaling pathway. Recent studies have revealed the prognostic value of KIBRA expression; however, its role in breast cancer remains unclear. The aim of this study was to examine KIBRA expression in relation to the clinical and pathological characteristics of patients with breast cancer and to disease outcomes. Materials and Methods: We analyzed the expression of KIBRA and its correlation with event-free survival (EFS) outcomes in resected samples from 486 patients with breast cancer. Results: KIBRA expression was significantly different among the molecular subgroups (low KIBRA expression: luminal A, 46.7% versus 50.0%, p = 0.641; luminal B, 32.7% versus 71.7%, p < 0.001; human epidermal growth factor receptor 2 (HER2)-enriched, 64.9% versus 45.5%. p = 0.001; triple-negative, 73.6% versus 43.8%, p < 0.001). Low KIBRA expression was also associated with high nuclear grade (60.4% versus 37.8%, p < 0.001), high histologic grade (58.7% versus 37.0%, p < 0.001), and estrogen receptor (ER) negativity (54.2% versus 23.6%, p < 0.001). Low KIBRA expression was significantly associated with poor EFS (p = 0.041; hazard ratio (HR) 1.658; 95% confidence interval (CI), 1.015-2.709). Low KIBRA expression was an independent indicator of poor prognosis (p = 0.001; HR = 3.952; 95% CI = 1.542-10.133) in triple-negative breast cancer (TNBC). Conclusion: Low KIBRA expression was associated with higher histological grade, ER negativity and poor EFS of breast cancer. In particular, our data highlight KIBRA expression status as a potential prognostic marker for TNBC.

Keywords: Hippo pathway; KIBRA; breast cancer; triple-negative breast cancer.

MeSH terms

  • Biomarkers, Tumor / genetics
  • Breast Neoplasms* / genetics
  • Female
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Prognosis
  • Signal Transduction
  • Triple Negative Breast Neoplasms* / genetics

Substances

  • Biomarkers, Tumor
  • Intracellular Signaling Peptides and Proteins
  • WWC1 protein, human