Growth, yield and arsenic accumulation by wheat grown in a pressmud amended salt-affected soil irrigated with arsenic contaminated water

Ecotoxicol Environ Saf. 2021 Aug 23:224:112692. doi: 10.1016/j.ecoenv.2021.112692. Online ahead of print.

Abstract

The study assessed the influence of pressmud (PM) application on soil available phosphorus (P) content, growth, yield, and arsenic (As) accumulation in wheat grains on a salt-affected soil receiving irrigation of As-contaminated water. Wheat seeds (cv. Faisalabad-2008) were sown in pots containing saline soil (EC 11.72 dS m-1; pH 8.07; SAR 31.3 mmol1/2 L-1/2) amended with PM (0, 2.5, 10 and 15 g kg-1) and irrigated with As-contaminated water (0, 25 and 100 µg L-1). The pot experiments had two sets, one was harvested after 30-days of germination while the other at crop maturity. Pressmud application at 2.5, 10 and 15 g kg-1 improved biomass of 30-days old wheat seedlings by 44%, 86% and 90%, respectively compared to unamended soil. Irrigation with As-contaminated waters did not affect seedling biomass or grain yield of wheat. Plant height, fertile tillers, straw biomass and grain yield increased from 57-62 cm, 3-5 no. plant-1, 2.93-5.31 g plant-1 and 3.93-7.11 g plant-1, respectively by 15 g PM kg-1 soil. Moreover, PM application resulted in an 8-fold increase in soil available P content, which resulted in higher grain P uptake. Irrigation with water of 25 and 100 µg As L-1 increased soil available P by 7.6% and 11%, respectively, but its influence on the grain P concentration was non-significant. Pressmud application in combination with As-contaminated water increased accumulation of As in grains. By applying water of 25 and 100 µg L-1 As, accumulation of As in wheat grains increased from 3.12-42.4 and 49.58-91.85 µg kg-1, respectively compared with normal water. However, these concentrations of As in wheat grains were still below the permissible limit of 430 µg kg-1 prescribed for agronomic crops. In conclusion, PM is very effective in improving wheat productivity on salt-affected soils but it can aggravate As accumulation in wheat grains if applied in combination with As polluted water.

Keywords: Grain As acquisition; Microbial population; Organic amendment; Salt-affected soil; Soil fertility.