In vivo monitoring of the therapeutic efficacy of a CXCR1/2 inhibitor with 18F-FDG PET/CT imaging in experimental head and neck carcinoma: A feasibility study

Biochem Biophys Rep. 2021 Aug 12:27:101098. doi: 10.1016/j.bbrep.2021.101098. eCollection 2021 Sep.

Abstract

The chemokine receptors CXCR1/2 play a key role in the aggressiveness of several types of cancers including head and neck squamous cell carcinomas (HNSCCs). In HNSCCs, CXCR1/2 signaling promotes cell proliferation and angiogenesis leading to tumor growth and metastasis. The competitive inhibitor of CXCR1/2, C29, inhibits the growth of experimental HNSCCs in mice. However, a non-invasive tool to monitor treatment response is essential to implement the use of C29 in clinical practices. 18F-FDG PET/CT is a gold-standard tool for the staging and the post-therapy follow-up of HNSCCs patients. Our study aimed to perform the first in vivo monitoring of C29 efficacy by non-invasive 18F-FDG PET/CT imaging. Mice bearing experimental HNSCCs (CAL33) were injected with 18F-FDG (T0) and thereafter treated (n = 7 mice, 9 tumors, 50 mg/kg by gavage) or not (n = 7 mice, 10 tumors) with C29 for 4 consecutive days. Final 18F-FDG-tumor uptake was determined at day 4 (TF). The average relative change (TF-T0) in 18F-FDG tumor uptake was +25.85 ± 10.93 % in the control group vs -5.72 ± 10.07 % in the C29-treated group (p < 0.01). These results were consistent with the decrease of the tumor burden and with the decrease of tumor proliferating Ki67+ cells. These results paved the way for the use of 18F-FDG to monitor tumor response following C29 treatment.

Keywords: 18F-FDG; CXCR1/2; Chemical inhibitor; HNSCCs; PET/CT imaging.