Upconversion NaYF4:Yb3+/Er3+@silica-TPGS Bio-Nano Complexes: Synthesis, Characterization, and In Vitro Tests for Labeling Cancer Cells

J Phys Chem B. 2021 Sep 2;125(34):9768-9775. doi: 10.1021/acs.jpcb.1c05472. Epub 2021 Aug 20.

Abstract

Fluorescence imaging is an important technique used for early diagnosis and effective treatment of some incurable diseases including cancer. Herein, we report novel NaYF4:Yb3+/Er3+@silica-TPGS bio-nano complexes for labeling cancer cells. The NaYF4:Yb3+/Er3+ nanoparticles have been successfully synthesized via a hydrothermal route, further coated with a silica shell, and functionalized with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The experimental results indicate that NaYF4:Yb3+/Er3+@silica-TPGS emits stronger upconversion luminescence than NaYF4:Yb3+/Er3+ under an excitation of 980 nm. More significantly, the NaYF4:Yb3+/Er3+@silica-TPGS bio-nano complexes could strongly label MCF-7 breast cancer cells for in vitro experiments detected by a fluorescence microscope. On the other hand, the complex could not typically probe healthy cells, which are HEK-293A human embryonic kidney cells, under the same experimental conditions. Because of their strong upconversion luminescence, good dispersibility, and biocompatibility, NaYF4:Yb3+/Er3+@silica-TPGS bio-nano complexes can be a promising candidate/probe for biomedical labeling and diagnostics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fluorides
  • Humans
  • In Vitro Techniques
  • Neoplasms*
  • Silicon Dioxide*
  • Vitamin E
  • Ytterbium

Substances

  • Vitamin E
  • Silicon Dioxide
  • Ytterbium
  • tocophersolan
  • Fluorides