Applicable and cost-efficient microplastic analysis by quantitative 1 H-NMR spectroscopy using benchtop NMR and NoD methods

Magn Reson Chem. 2022 Jan;60(1):172-183. doi: 10.1002/mrc.5210. Epub 2021 Sep 1.

Abstract

In continuation of our work on the proof-of-concept that quantitative NMR spectroscopy may be a valuable tool in microplastic (MP) analysis and quantification, we present here investigations using low-field NMR spectrometers and nondeuterated solvents for the analysis of solutions of MP particles in suitable solvents. The use of low-field NMR spectrometers (benchtop NMR) that are considerably more cost-effective in terms of purchase and operating costs compared with high-field NMR spectrometers and the use of nondeuterated solvents (NoD method) leads to an applicable and cost-efficient method for mass-based MP analysis. For benchtop 80-MHz NMR, limits of detection for polyvinylchloride (PVC), polyethylene terephthalate (PET), and polystyrene (PS) are in the same range as if a high-field 500-MHz NMR spectrometer was used for quantification (500 MHz: PET 1 μg/ml, PVC 42 μg/ml, and PS 9 μg/ml; 80 MHz: PET 4 μg/ml, PVC 19 μg/ml, and PS 21 μg/ml) for polymers being dissolved in deuterated solvents. The same is true for the corresponding limits of quantification. Moreover, it is shown for the first time that quantitative determination of the mass concentration of PET, PVC, and PS is also possible using NoD methods by evaluating the integrals of polymer-specific signals relative to an internal or external standard. Detection limits for NoD methods are in a similar range as if deuterated solvents were used (PET 2 μg/ml, PVC 39 μg/ml, and PS 8 μg/ml) using a high-field 500-MHz spectrometer or the 80-MHz spectrometer (PET 5 μg/ml).

Publication types

  • Research Support, Non-U.S. Gov't