Pretreatment Source Location and Functional Connectivity Network Correlated With Therapy Response in Childhood Absence Epilepsy: A Magnetoencephalography Study

Front Neurol. 2021 Aug 3:12:692126. doi: 10.3389/fneur.2021.692126. eCollection 2021.

Abstract

Objective: This study aims to investigate the differences between antiepileptic drug (AED) responders and nonresponders among patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the neuromagnetic signals of the brain neurons were correlated with the response to therapy. Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency bandwidths during ictal periods. The source location and functional connectivity were analyzed using accumulated source imaging and correlation analysis, respectively. All patients were treated with appropriate AED, at least 1 year after their MEG recordings, their outcome was assessed, and they were consequently divided into responders and nonresponders. Results: The source location of the nonresponders was mainly in the frontal cortex at a frequency range of 8-12 and 30-80 Hz, especially 8-12 Hz, while the source location of the nonresponders was mostly in the medial frontal cortex, which was chosen as the region of interest. The nonresponders showed strong positive local frontal connections and deficient anterior and posterior connections at 80-250 Hz. Conclusion: The frontal cortex and especially the medial frontal cortex at α band might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic network at 80-250 Hz in our study might further reveal underlying cerebral abnormalities even before treatment in CAE patients, which could cause them to be nonresponsive to AED. One single mechanism cannot explain AED resistance; the nonresponders may represent a subgroup of CAE who is refractory to several antiepileptic drugs.

Keywords: antiepileptic drug nonresponders; antiepileptic drug responders; childhood absence epilepsy; functional connectivity; ictal periods; source location.