Solution landscapes of the diblock copolymer-homopolymer model under two-dimensional confinement

Phys Rev E. 2021 Jul;104(1-1):014505. doi: 10.1103/PhysRevE.104.014505.

Abstract

We investigate the solution landscapes of the confined diblock copolymer and homopolymer in two-dimensional domain by using the extended Ohta-Kawasaki model. The projection saddle dynamics method is developed to compute the saddle points with mass conservation and construct the solution landscape by coupling with downward and upward search algorithms. A variety of stationary solutions are identified and classified in the solution landscape, including Flower class, Mosaic class, Core-shell class, and Tai-chi class. The relationships between different stable states are shown by either transition pathways connected by index-1 saddle points or dynamical pathways connected by a high-index saddle point. The solution landscapes also demonstrate the symmetry-breaking phenomena, in which more solutions with high symmetry are found when the domain size increases.