Alternative wetting boundary condition for the chemical-potential-based free-energy lattice Boltzmann model

Phys Rev E. 2021 Jul;104(1-2):015303. doi: 10.1103/PhysRevE.104.015303.

Abstract

The free-energy lattice Boltzmann (LB) method is a multiphase LB approach based on the thermodynamic theory. Compared with traditional free-energy LB models, which employ a nonideal thermodynamic pressure tensor, the chemical-potential-based free-energy LB model has attracted much attention in recent years as it avoids computing the thermodynamic pressure tensor and its divergence. In this paper, we propose an improved wetting boundary condition for the chemical-potential-based free-energy LB model. Different from the original wetting boundary condition in the literature, the improved wetting boundary condition utilizes a surface chemical potential that is compatible with the chemical potential of the fluid domain. Accordingly, the thermodynamic consistency of the chemical-potential-based free-energy LB model can be retained by the improved wetting boundary condition. Numerical simulations are performed for droplets resting on flat and cylindrical surfaces with different contact angles. The numerical results show that the improved wetting boundary condition yields more reasonable results and the maximum spurious velocities are found to be smaller by 2 ∼ 3 orders of magnitude than those produced by the original wetting boundary condition.