Improvement of interfacial contact for efficient PCBM/MAPbI3planar heterojunction solar cells with a binary antisolvent mixture treatment

Nanotechnology. 2021 Sep 6;32(48). doi: 10.1088/1361-6528/ac1ec0.

Abstract

Atomic-force microscopic images, x-ray diffraction patterns, Urbach energies and photoluminescence quenching experiments show that the interfacial contact quality between the hydrophobic [6,6]-phenyl-C61-buttric acid methyl ester (PCBM) thin film and hydrophilic CH3NH3PbI3(MAPbI3) thin film can be effectively improved by using a binary antisolvent mixture (toluene:dichloromethane or chlorobenzene:dichloromethane) in the anti-solvent mixture-mediated nucleation process, which increases the averaged power conversion efficiency of the resultant PEDOT:PSS (P3CT-Na) thin film based MAPbI3solar cells from 13.18% (18.52%) to 13.80% (19.55%). Beside, the use of 10% dichloromethane (DCM) in the binary antisolvent mixture results in a nano-textured MAPbI3thin film with multicrystalline micrometer-sized grains and thereby increasing the short-circuit current density and fill factor (FF) of the resultant solar cells. It is noted that a remarkable FF of 80.33% is achieved, which can be used to explain the stable photovoltaic performance without additional encapsulations.

Keywords: MAPbI3 solar cells; PCBM/MAPbI3 interface; binary antisolvent mixture; chlorobenzene:dichloromethane; toluene:dichloromethane.