FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40656-40663. doi: 10.1021/acsami.1c11751. Epub 2021 Aug 18.

Abstract

Nontoxic tin-based perovskite solar cells (Sn-PSCs) as a promising alternative to toxic Pb-PSCs have drawn great attention in recent years for their environmental friendliness and unique optoelectronic properties. However, both the efficiency and long-term stability of Sn-PSCs are considerably inferior to those of Pb-based ones. One of the main reasons is the difficulty in obtaining high-quality Sn-perovskite films due to the rapid crystallization of Sn-perovskites, which also results in poor device reproducibility. Here, we report a novel cation exchange strategy to prepare high-quality formamidinium tin triiodide (FASnI3) perovskite films with a better controlled crystallization process and improved reproducibility, which allows easy access to smooth and pinhole-free perovskite films with oriented crystal growth, enlarged grain size, and reduced trap-state density. The corresponding Sn-PSCs show excellent photovoltaic performance with a champion efficiency of 9.11%, comparable to the best results reported for FASnI3-PSCs, and the devices also demonstrate outstanding long-term stability without encapsulation. Our results offer a practical strategy for fabricating Sn-PSCs with superb performance and stability.

Keywords: cation exchange; crystal growth; reproducibility; solar cells; tin perovskite.