A Novel Matrix-Array-Based MR-Conditional Ultrasound System for Local Hyperthermia of Small Animals

IEEE Trans Biomed Eng. 2022 Feb;69(2):758-770. doi: 10.1109/TBME.2021.3104865. Epub 2022 Jan 20.

Abstract

Objective: The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects.

Methods: For 3D-beam steering capabilities, a matrix array approach with 11 × 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner.

Results: Four 11 × 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4 °C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm.

Conclusion: We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to ±30°. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests.

Significance: The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hyperthermia, Induced* / methods
  • Magnetic Resonance Imaging / veterinary
  • Phantoms, Imaging
  • Ultrasonography / veterinary