AA_stat: Intelligent profiling of in vivo and in vitro modifications from open search results

J Proteomics. 2021 Sep 30:248:104350. doi: 10.1016/j.jprot.2021.104350. Epub 2021 Aug 10.

Abstract

Characterization of post-translational modifications is among the most challenging tasks in tandem mass spectrometry-based proteomics which has yet to find an efficient solution. The ultra-tolerant (open) database search attempts to meet this challenge. However, interpretation of the mass shifts observed in open search still requires an effective and automated solution. We have previously introduced the AA_stat tool for analysis of amino acid frequencies at different mass shifts and generation of hypotheses on unaccounted in vitro modifications. Here, we report on the new version of AA_stat, which now complements amino acid frequency statistics with a number of new features: (1) MS/MS-based localization of mass shifts and localization scoring, including shifts which are the sum of modifications; (2) inferring fixed modifications to increase method sensitivity; (3) inferring monoisotopic peak assignment errors and variable modifications based on abundant mass shift localizations to increase the yield of closed search; (4) new mass calibration algorithm to account for partial systematic shifts; (5) interactive integration of all results and a rated list of possible mass shift interpretations. With these options, we improve interpretation of open search results and demonstrate the utility of AA_stat for profiling of abundant and rare amino acid modifications. AA_stat is implemented in Python as an open-source tool available at https://github.com/SimpleNumber/aa_stat. SIGNIFICANCE: Mass spectrometry-based PTM characterization has a long history, yet most of the methods rely on a priori knowledge of modifications of interest and do not provide a whole proteome modification landscape in a blind manner. The open database search is an efficient attempt to address this challenge by identifying peptides with mass shifts corresponding to possible modifications. Then, interpreting these mass shifts is required. Therefore, development of bioinformatics software for post-processing of the open search results, which is capable of detection and accurate annotation of new or unexpected modifications, from characterization of sample preparation efficiency and quality control to discovery of rare post-translational modifications, is of high importance.

Keywords: Bioinformatics; Mass spectrometry; Open search; Post translational modifications; Proteomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Databases, Protein
  • Protein Processing, Post-Translational
  • Proteomics*
  • Software
  • Tandem Mass Spectrometry*