Dopamine in Parkinson's disease

Clin Chim Acta. 2021 Nov:522:114-126. doi: 10.1016/j.cca.2021.08.009. Epub 2021 Aug 11.

Abstract

Parkinson's disease is a neurodegenerative disease caused by the death of neurons, ie, cells critical to the production of dopamine, an important neurotransmitter in the brain. Here, we present a brief review of the dopamine synthetic pathway, binding to the dopamine receptors, and subsequent action. The production of dopamine (a monoamine neurotransmitter) occurs in the ventral tegmental area (VTA) of the substantia nigra, specifically in the hypothalamic nucleus and midbrain. Compared to other monoamines, dopamine is widely distributed in the olfactory bulb, midbrain substantia nigra, hypothalamus, VTA, retina, and the periaqueductal gray area. Dopamine receptors are large G-protein coupled receptor family members, of which there are five subtypes including D1, D2, D3, D4, and D5. These subtypes are further divided into two subclasses: D1-like family receptors (types 1 and 5) and D2-like family receptors (types 2, 3, and 4). Four different pathways and functions of the dopaminergic system are presented in this review. In the oxidation of dopamine, 5,6-indolequinone, dopamine-o-quinone, and aminochrome are formed. It is difficult to separate the roles of 5,6-indolequinone and dopamine-o-quinone in the degenerative process of Parkinson's diseases due to their instability. The role of aminochrome in Parkinson's disease is to form and stabilize the neurotoxic protofibrils of alpha-synuclein, mitochondrial dysfunction, oxidative stress, and the degradation of protein by lysosomal systems and proteasomes. The neurotoxic effects of aminochrome can be inhibited by preventing the polymerization of 5,6-indolequinone, dopamine-o-quinone, and aminochrome into neuromelanin, by reducing aminochrome catalysis by DT-diaphorase, and by preventing dopamine oxidative deamination catalyzed by monoamine oxidase. In addition to these, the conversion of dopamine in the neuromelanin (NM) shows both protective and toxic roles. Therefore, the aims of this review were to discuss and explain the role of dopamine and explore its physiology and specificity in Parkinson's disease, as well as its role in other physiological functions.

Keywords: 5,6-indolequinone; Aminochrome; Dopamine; Dopamine o-quinone; Dopamine receptors (D1-like and D2-like family); Dopaminergic pathways; Neurodegeneration; Parkinson’s disease.

Publication types

  • Review

MeSH terms

  • Dopamine
  • Humans
  • Neurodegenerative Diseases*
  • Neurons
  • Oxidation-Reduction
  • Parkinson Disease* / drug therapy

Substances

  • Dopamine