Structures and function of the amino acid polymerase cyanophycin synthetase

Nat Chem Biol. 2021 Oct;17(10):1101-1110. doi: 10.1038/s41589-021-00854-y. Epub 2021 Aug 12.

Abstract

Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the β-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / enzymology*
  • Bacteria / genetics
  • Bacteria / metabolism
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Gene Expression Regulation, Bacterial
  • Gene Expression Regulation, Enzymologic
  • Models, Molecular
  • Peptide Synthases / chemistry*
  • Peptide Synthases / genetics
  • Peptide Synthases / metabolism*
  • Protein Conformation

Substances

  • Bacterial Proteins
  • Peptide Synthases
  • cyanophycin synthase, bacteria