Lycopene modulates lipid metabolism in rats and their offspring under a high-fat diet

Food Funct. 2021 Oct 4;12(19):8960-8975. doi: 10.1039/d1fo01039e.

Abstract

The purpose of this study was to investigate the effects of lycopene supplementation on lipid metabolism in rats and their offspring. The experiment was conducted on 60 female rats divided into four groups: normal diet, normal diet with 200 mg kg-1 lycopene, high-fat diet, and high-fat diet with 200 mg kg-1 lycopene. The plasma levels of TG, LDL-C, AST and ALT in female rats fed a high-fat diet were significantly increased (P < 0.05). Lycopene supplementation reduced the plasma TG, LEP and AST levels (P < 0.05). In addition, the activity of ACC and mRNA expression of SREBP1c, FAS, PPARγ, CPT1, HMGCR, ACC, PLIN1 and FATP1 in the liver were also increased after feeding a high-fat diet (P < 0.05), whereas the expression of HSL was decreased (P < 0.05). Lycopene increased the activity of HSL and the expression of ATGL in the liver (P < 0.05), and the activity of ACC and mRNA expression of HMGCR and ACC were decreased (P < 0.05). For the offspring, maternal feeding of a high-fat diet reduced the plasma HDL-C levels (P < 0.05), but lycopene supplementation reduced the plasma TC levels (P < 0.05). Maternal high-fat diet also decreased the activity of HSL and the expression of CD36, PLIN1 and FATP1 in the liver while increasing the expression of PPARγ (P < 0.05). Maternal lycopene supplementation decreased the activities of ACC and FAS in the liver and decreased the expression of PPARγ, ACC and PLIN1 (P < 0.05). Maternal feeding of a high-fat diet increased the level of oxidative stress in the liver, the level of blood lipids in plasma and the rate of lipid production in the liver of rats and their offspring. Maternal lycopene supplementation can reduce the level of oxidative stress in rats and their offspring, reduce the level of blood lipids in plasma, and also reduce the rate of lipid production in the liver of rats and offspring.

MeSH terms

  • Animals
  • Diet, High-Fat
  • Dietary Supplements
  • Female
  • Lipid Metabolism / drug effects*
  • Lycopene / administration & dosage
  • Lycopene / pharmacology*
  • Models, Animal
  • Pregnancy
  • Prenatal Exposure Delayed Effects*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Lycopene