Molecular imaging of plant-microbe interactions on the Brachypodium seed surface

Analyst. 2021 Sep 27;146(19):5855-5865. doi: 10.1039/d1an00205h.

Abstract

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.

MeSH terms

  • Brachypodium*
  • Micrococcaceae*
  • Molecular Imaging
  • Seeds

Supplementary concepts

  • Pseudarthrobacter chlorophenolicus