A Hybrid-Domain Deep Learning-Based BCI For Discriminating Hand Motion Planning From EEG Sources

Int J Neural Syst. 2021 Sep;31(9):2150038. doi: 10.1142/S0129065721500386. Epub 2021 Aug 11.

Abstract

In this paper, a hybrid-domain deep learning (DL)-based neural system is proposed to decode hand movement preparation phases from electroencephalographic (EEG) recordings. The system exploits information extracted from the temporal-domain and time-frequency-domain, as part of a hybrid strategy, to discriminate the temporal windows (i.e. EEG epochs) preceding hand sub-movements (open/close) and the resting state. To this end, for each EEG epoch, the associated cortical source signals in the motor cortex and the corresponding time-frequency (TF) maps are estimated via beamforming and Continuous Wavelet Transform (CWT), respectively. Two Convolutional Neural Networks (CNNs) are designed: specifically, the first CNN is trained over a dataset of temporal (T) data (i.e. EEG sources), and is referred to as T-CNN; the second CNN is trained over a dataset of TF data (i.e. TF-maps of EEG sources), and is referred to as TF-CNN. Two sets of features denoted as T-features and TF-features, extracted from T-CNN and TF-CNN, respectively, are concatenated in a single features vector (denoted as TTF-features vector) which is used as input to a standard multi-layer perceptron for classification purposes. Experimental results show a significant performance improvement of our proposed hybrid-domain DL approach as compared to temporal-only and time-frequency-only-based benchmark approaches, achieving an average accuracy of [Formula: see text]%.

Keywords: Deep learning; beamforming; brain–computer interface; electroencephalography; feature fusion; wavelet transform.

MeSH terms

  • Algorithms
  • Brain-Computer Interfaces*
  • Deep Learning*
  • Electroencephalography
  • Machine Learning
  • Neural Networks, Computer