Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers

Bioorg Chem. 2021 Sep:114:105200. doi: 10.1016/j.bioorg.2021.105200. Epub 2021 Jul 29.

Abstract

Dual targeting of EGFR/HER2 receptor is an attractive strategy for cancer therapy. Four series of 4-anilinoquinoline-3-carbonitrile derivatives were designed and prepared by introducing various functional groups, including a polar hydrophilic group (carboxylic acid), a heterocyclic substituent possessing polarity to some extent, and an unpolar hydrophobic phenyl portion, at the C-6 position of the quinoline skeleton. All of the prepared derivatives were screened for their inhibitory activities against EGFR /HER2 receptors and their antiproliferative activities against the SK-BR-3 and A431 cell lines. Compounds 6a, 6 g and 6d exhibited significant activities against the target cell lines. In particular, the antiproliferative activity of 6d (IC50 = 1.930 μM) against SK-BR-3 was over 2-fold higher than that of neratinib (IC50 = 3.966 μM), and comparable to that of Lapatinib (IC50 = 2.737 μM). On the other hand, 6d (IC50 = 1.893 μM) was more active than the reference drug Neratinib (IC50 = 2.151 μM), and showed comparable potency to Lapatinib (IC50 = 1.285 μM) against A431. Cell cycle analysis and apoptosis assays indicated that 6d arrests the cell cycle in the S phase, and it is a potent apoptotic inducer. Moreover, molecular docking exhibited the binding modes of compound 6d in EGFR and HER2 binding sites, respectively. Compound 6d can be considered as a candidate for further investigation as a more potent anticancer agent.

Keywords: Anticancer, Inhibitors; Apoptosis, Quinolin; Molecular docking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Quinolines / chemical synthesis
  • Quinolines / chemistry
  • Quinolines / pharmacology*
  • Receptor, ErbB-2 / antagonists & inhibitors*
  • Receptor, ErbB-2 / metabolism
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Quinolines
  • EGFR protein, human
  • ERBB2 protein, human
  • ErbB Receptors
  • Receptor, ErbB-2