Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate

Polymers (Basel). 2021 Jul 23;13(15):2431. doi: 10.3390/polym13152431.

Abstract

In this study, the surface modification on graphene oxide (GO) was performed using octadecylamine (ODA). Furthermore, polybutylene terephthalate/GO (PBT/GO) composites were prepared to elucidate the role of GO surface modification on the mechanical performance, thermal stability and crystallization behavior. Results of Fourier transform infrared spectra (FT-IR), Raman spectrum, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) revealed that ODA was successfully grafted on GO. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), tensile test, Izod impact strength test and TGA were carried out on the PBT/GO composites. Results indicated that the addition of raw GO can enhance the crystallization temperature and degree of crystallinity and can slightly improve the thermal stability and tensile strength of the composites. However, the impact strength and elongation at break were seriously decreased owing to the poor compatibility between the GO and PBT matrix. Once the modified GO was added, the crystallization temperature and degree of crystallinity were greatly increased. The tensile strength increased greatly while the elongation at break and Izod impact strength were efficiently maintained; these were evidently higher than those of PBT/raw GO. Moreover, thermal stability was greatly enhanced. SEM (scanning electron microscope) observation results on the impact-fractured surface clearly confirmed the improved compatibility between the modified GO and PBT matrix. A related mechanism had been discussed.

Keywords: graphene oxide; mechanical properties; polybutylene terephthalate; surface modification.