Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart

Nutrients. 2021 Jul 8;13(7):2332. doi: 10.3390/nu13072332.

Abstract

The aim of the present study was to investigate the possible protective effects of a garlic hydroalcoholic extract on the burden of oxidative stress and inflammation occurring on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS), which is a well-established inflammatory stimulus. Headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry (HS-SPME/GC-MS) technique was applied to determine the volatile fraction of the garlic powder, and the HS-SPME conditions were optimized for each of the most representative classes of compounds. CIEL*a*b* colorimetric analyses were performed on the powder sample at the time of delivery, after four and after eight months of storage at room temperature in the dark, to evaluate the color changing. Freshly prepared hydroalcoholic extract was also evaluated in its color character. Furthermore, the hydroalcoholic extract was analyzed through GC-MS. The extract was found to be able to significantly inhibit LPS-induced prostaglandin (PG) E2 and 8-iso-PGF levels, as well as mRNA levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and nuclear factor-kB (NF-kB), in heart specimens. Concluding, our findings showed that the garlic hydroalcoholic extract exhibited cardioprotective effects on multiple inflammatory and oxidative stress pathways.

Keywords: CIEL*a*b*; HS-SPME/GC–MS; bioinformatics; garlic; inflammation; multimethodological evaluation; oxidative stress.

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Cardiotonic Agents / pharmacology*
  • Garlic / chemistry*
  • Gas Chromatography-Mass Spectrometry
  • Heart / drug effects*
  • Mice
  • Oxidative Stress / drug effects*
  • Plant Extracts / pharmacology*
  • Solid Phase Microextraction

Substances

  • Antioxidants
  • Cardiotonic Agents
  • Plant Extracts

Grants and funding