Preliminary Investigations into the Use of Amylases and Lactic Acid Bacteria to Obtain Fermented Vegetable Products

Foods. 2021 Jul 2;10(7):1530. doi: 10.3390/foods10071530.

Abstract

Legumes are valuable sources of proteins and other functional components. However, the high starch content can be an impediment in developing new vegan food formulations. Enzyme-assisted hydrolysis was used to hydrolyze the starch from chickpea and broad bean vegetable milk to further develop vegetable lactic acid-fermented products. The antioxidant activity of legumes was tested, and it was observed that the overall antioxidant activity (DPPH radical scavenging ability) significantly increased after enzyme-assisted hydrolysis while total phenols content decreased. The obtained vegetable milk was then fermented using exopolysaccharides-producing lactic acid bacteria. A significant decolorization was observed after fermentation in the case of broad bean-based products. Rheological behavior of the fermented products was determined using small amplitude oscillatory measurements and the three-interval thixotropy test. Results showed higher complex viscosity values for broad bean-based products, which displayed a weak gel-like structure. The starter cultures used for vegetable milk samples fermentation influenced the resistance to flow.

Keywords: antioxidant activity; enzyme hydrolysis; rheological behavior; three-interval thixotropy test; vegetable milk substitutes.