Pitavastatin Ameliorates Lipopolysaccharide-Induced Blood-Brain Barrier Dysfunction

Biomedicines. 2021 Jul 18;9(7):837. doi: 10.3390/biomedicines9070837.

Abstract

Statins have neuroprotective effects on neurological diseases, including a pleiotropic effect possibly related to blood-brain barrier (BBB) function. In this study, we investigated the effects of pitavastatin (PTV) on lipopolysaccharide (LPS)-induced BBB dysfunction in an in vitro BBB model comprising cocultured primary mouse brain endothelial cells, pericytes, and astrocytes. LPS (1 ng/mL, 24 h) increased the permeability and lowered the transendothelial electrical resistance of the BBB, and the co-administration of PTV prevented these effects. LPS increased the release of interleukin-6, granulocyte colony-stimulating factor, keratinocyte-derived chemokine, monocyte chemotactic protein-1, and regulated on activation, normal T-cell expressed and secreted from the BBB model. PTV inhibited the LPS-induced release of these cytokines. These results suggest that PTV can ameliorate LPS-induced BBB dysfunction, and these effects might be mediated through the inhibition of LPS-induced cytokine production. Clinically, therapeutic approaches using statins combined with novel strategies need to be designed. Our present finding sheds light on the pharmacological significance of statins in the treatment of central nervous system diseases.

Keywords: blood-brain barrier; central nervous system diseases; cytokine; inflammation; lipopolysaccharide; statin.