GC-MS Based Metabolomics Reveals the Synergistic Mechanism of Gardeniae Fructus-Forsythiae Fructus Herb Pair in Lipopolysaccharide-Induced Acute Lung Injury Mouse Model

Evid Based Complement Alternat Med. 2021 Jul 27:2021:8064557. doi: 10.1155/2021/8064557. eCollection 2021.

Abstract

Compatibility remains among the crucial and significant characteristics of traditional Chinese medicines. The Gardeniae Fructus (FG)-Forsythiae Fructus (FF) herb pair, an epitome of formulations for heat-clearing and detoxification, is extensively used to treat bacterial pneumonia in clinical settings. However, there are few reports on their synergistic effects. This study thus investigated their compatibility by GC-MS based metabolomics using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Differential metabolites were identified by both variable importance in the projection (VIP) > 1 in orthogonal partial least-squares discriminant analysis (OPLS-DA) mode and P < 0.05. Results of biochemistry and histopathology indicated that FG-FF herb pair exerted more promising lung protective effect than its individual decoction against the LPS-induced ALI model. From the metabolomics study, 32 differential metabolites in vehicle vs. model groups, 21 differential metabolites in FF vs. model groups, 21 differential metabolites in FG vs. model groups, and 20 differential metabolites in FG-FF herb pair vs. model groups were found. Among them, the levels of 3-hydroxybutyric acid, alanine, isophthalic acid, and terephthalic acid were restored significantly in the FF group, while silanol and cholesterol were restored significantly in the FG group. For FG-FF treatment, the amount of behenic acid, a metabolite with anti-inflammatory properties, was increased, while palmitic acid, a proinflammatory metabolite, was decreased. Meanwhile, the two biomarkers were restored more significantly than that by FG or FF treatment, which indicated that the synergistic effects by FF coupled with FG might be attributed to restoring fatty acids metabolic pathway.