Generalist camouflage can be more successful than microhabitat specialisation in natural environments

BMC Ecol Evol. 2021 Aug 3;21(1):151. doi: 10.1186/s12862-021-01883-w.

Abstract

Background: Crypsis by background-matching is a critical form of anti-predator defence for animals exposed to visual predators, but achieving effective camouflage in patchy and variable natural environments is not straightforward. To cope with heterogeneous backgrounds, animals could either specialise on particular microhabitat patches, appearing cryptic in some areas but mismatching others, or adopt a compromise strategy, providing partial matching across different patch types. Existing studies have tested the effectiveness of compromise strategies in only a limited set of circumstances, primarily with small targets varying in pattern, and usually in screen-based tasks. Here, we measured the detection risk associated with different background-matching strategies for relatively large targets, with human observers searching for them in natural scenes, and focusing on colour. Model prey were designed to either 'specialise' on the colour of common microhabitat patches, or 'generalise' by matching the average colour of the whole visual scenes.

Results: In both the field and an equivalent online computer-based search task, targets adopting the generalist strategy were more successful in evading detection than those matching microhabitat patches. This advantage occurred because, across all possible locations in these experiments, targets were typically viewed against a patchwork of different microhabitat areas; the putatively generalist targets were thus more similar on average to their various immediate surroundings than were the specialists.

Conclusions: Demonstrating close agreement between the results of field and online search experiments provides useful validation of online citizen science methods commonly used to test principles of camouflage, at least for human observers. In finding a survival benefit to matching the average colour of the visual scenes in our chosen environment, our results highlight the importance of relative scales in determining optimal camouflage strategies, and suggest how compromise coloration can succeed in nature.

Keywords: Anti-predator coloration; Background matching; Camouflage; Citizen science; Crypsis; Detection risk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Environment
  • Humans
  • Pigmentation*
  • Predatory Behavior*
  • Specialization
  • Visual Perception