Stable, superfast and self-healing fluid coating with active corrosion resistance

Adv Colloid Interface Sci. 2021 Sep:295:102494. doi: 10.1016/j.cis.2021.102494. Epub 2021 Jul 24.

Abstract

Fluid material can recover from damage rapidly with no demand of external triggering in contrast with the traditional self-healing material which presents low healing efficiency and demands external triggering, such as heat, light, moisture, electricity, etc. However, due to its low viscosity, fluid material is easy to flow away from the surface and thus it is difficult to form a stable coating on the surface to provide practical corrosion resistance to the substrate. Herein, a stable and superfast self-healing coating on steel substrate has been obtained by incorporating carbon nanotube (CNT) into the fluid matrix of epoxy resin (EP) or silicone oil (OIL). To further achieve the active corrosion resistance, 1H, 1H, 2H, 2H- perfluorooctyltriethoxysilane (PTES) which can react with the water inside the coating is added. The coating possesses superfast (tens of seconds) self-healing properties against millimeter-scale scratch repeatedly and excellent corrosion resistance in the aqueous solution of HCl (1 M) and NaOH (1 M). In-situ self-healing and electrochemical behavior in scanning vibrating electrode technique (SVET) measurement indicate the fluid coating possesses infinite self-healing capacity theoretically. Due to its excellent durability and infinite self-healing capacity with short responding time, the optimized fluid coating can be a smart corrosion barrier coating for metals.

Keywords: Corrosion resistance; Four generations; Self-healing; Self-healing strategy; Superfast.

Publication types

  • Letter