Higher zero valent iron soil amendments dosages markedly inhibit accumulation of As in Faya and Kilombero cultivars compared to Cd

Sci Total Environ. 2021 Nov 10:794:148735. doi: 10.1016/j.scitotenv.2021.148735. Epub 2021 Jun 30.

Abstract

Impact of zero valent iron (Fe°) amendment on grain-yield (GY) and grain-As and Cd accumulation in rice (Oryza sativa L.) cultivars Kilombero and Faya were investigated. Rice plants were amended with Fe° dosages of 0, 3.1, 6.2, and 12.4 g Fe°/kg soil in pots in greenhouse experiments under continuous flooding water regime. GY in each treatment was determined at maturity, grain-As and Cd and arsenic species concentrations were determined using ICP-MS and HPLC tandem ICP-MS respectively. Mean GY in Faya (5.5 ± 1.0 g/plant) and Kilombero (4.2 ± 0.4 g/plant) amended with at least 6.2 g Fe°/kg soil were at least 57% and 22% respectively significantly higher (F = 11; p = 0.003) than that in controls (3.7 ± 0.6 and 3.4 ± 0.4 g/plant). For As bioaccumulation, mean grain-As concentration in Faya T2 (≤227 ± 32 μg/kg) and Kilombero (≤218 ± 25 μg/kg) amended with at least 6.2 g Fe°/kg soil in were at least 83% and 77% respectively significantly lower (F = 7; p = 0.004) than that in controls (973 ± 43 μg/kg and 1278 ± 208 μg/kg). Mean grain-Cd concentrations in Faya (10 ± 2 μg/kg) and Kilombero (13 ± 3 μg/kg) amended with corresponding Fe° dosages were at least 26% and 39% significantly lower (F = 4; p < 0.05) than that in controls (18 ± 3 and 23 ± 1 μg/kg). Results indicated that amending Kilombero with at least 6.2 g/kg Fe° effectively optimally regulated both grain-As and Cd accumulation to values lower than the European Commission's legislated maximum contaminant limits (MCL) of 200 μg/kg without negating grain yield benefits. Our results suggest that bioaccumulation of both As and Cd in rice grains may be completely circumvented by adopting cultivar-specific Fe° amendment dosage.

Keywords: Arsenic; Cadmium; Cultivar; Faya; Kilombero; Zero valent iron (Fe°).

MeSH terms

  • Arsenic* / analysis
  • Cadmium / analysis
  • Iron / analysis
  • Oryza*
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Soil
  • Soil Pollutants
  • Cadmium
  • Iron
  • Arsenic