Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification

Hum Brain Mapp. 2021 Oct 1;42(14):4658-4670. doi: 10.1002/hbm.25574. Epub 2021 Jul 29.

Abstract

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.

Keywords: diffusion magnetic resonance imaging; machine learning; precision medicine; schizophrenia; white matter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Diffusion Tensor Imaging / methods
  • Diffusion Tensor Imaging / standards*
  • Female
  • Humans
  • Machine Learning*
  • Male
  • Middle Aged
  • Models, Theoretical
  • Precision Medicine
  • Predictive Value of Tests
  • Schizophrenia / classification*
  • Schizophrenia / diagnostic imaging*
  • Schizophrenia / pathology
  • White Matter / diagnostic imaging*
  • White Matter / pathology
  • Young Adult