A game theoretic power control and spectrum sharing approach using cost dominance in cognitive radio networks

PeerJ Comput Sci. 2021 Jul 15:7:e617. doi: 10.7717/peerj-cs.617. eCollection 2021.

Abstract

The wireless networks face challenges in efficient utilization of bandwidth due to paucity of resources and lack of central management, which may result in undesired congestion. The cognitive radio (CR) paradigm can bring efficiency, better utilization of bandwidth, and appropriate management of limited resources. While the CR paradigm is an attractive choice, the CRs selfishly compete to acquire and utilize available bandwidth that may ultimately result in inappropriate power levels, causing degradation in network's Quality of Service (QoS). A cooperative game theoretic approach can ease the problem of spectrum sharing and power utilization in a hostile and selfish environment. We focus on the challenge of congestion control that results in inadequate and uncontrolled access of channels and utilization of resources. The Nash equilibrium (NE) of a cooperative congestion game is examined by considering the cost basis, which is embedded in the utility function. The proposed algorithm inhibits the utility, which leads to the decrease in aggregate cost and global function maximization. The cost dominance is a pivotal agent for cooperation in CRs that results in efficient power allocation. Simulation results show reduction in power utilization due to improved management in cognitive radio resource allocation.

Keywords: Bandwidth allocation; Cognitive radio networks; Cooperative congestion game; Nash equilibrium; Power control.

Grants and funding

The authors received no funding for this work.