Effect of substitution on the superconducting phase of transition metal dichalcogenide Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text] van der Waals layered structure

Sci Rep. 2021 Jul 26;11(1):15215. doi: 10.1038/s41598-021-94000-2.

Abstract

By means of first-principles cluster expansion, anisotropic superconductivity in the transition metal dichalcogenide Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text] forming a van der Waals (vdW) layered structure is observed theoretically. We show that the Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text] vdW-layered structure exhibits minimum ground-state energy. The Pnnm structure is more thermodynamically stable when compared to the 2H-NbSe[Formula: see text] and 2H-NbS[Formula: see text] structures. The characteristics of its phonon dispersions confirm its dynamical stability. According to electronic properties, i.e., electronic band structure, density of states, and Fermi surface indicate metallicity of Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text]. The corresponding superconductivity is then investigated through the Eliashberg spectral function, which gives rise to a superconducting transition temperature of 14.5 K. This proposes a remarkable improvement of superconductivity in this transition metal dichalcogenide.