Influence of nitisinone and its metabolites on l-tyrosine metabolism in a model system

Chemosphere. 2022 Jan;286(Pt 1):131592. doi: 10.1016/j.chemosphere.2021.131592. Epub 2021 Jul 19.

Abstract

Nitisinone (NTBC) is currently used for the treatment of tyrosinemia type 1, a rare disease. It also exhibits potential in the treatment of other orphan diseases as well as nervous system disorders - this is however limited by its side effects. In all living organisms, NTBC inhibits 4-hydroxyphenylpyruvate dioxygenase activity, thereby affecting l-tyrosine (L-TYR) catabolism, which results in the therapeutic effect. The NTBC metabolites formed in patient's body is one of the causes of its side effects. The influence of NTBC and its metabolites; 2-amino-4-(trifluoromethyl)benzoic acid, 2-nitro-4-(trifluoromethyl)benzoic acid, and cyclohexane-1,3-dione on L-TYR catabolism was investigated in Raphanus sativus var. longipinnatus. Based on targeted LC-MS/MS analysis the concentration of NTBC and its metabolites in exposed plant tissues was determined. Based on non-targeted LC-MS/MS analysis the concentrations of products of L-TYR catabolism: levodopa, epinephrine, norepinephrine, normetanephrine, dopamine, tyramine and vitamins C, B5 and B6, additionally leucine and valine were identified as influenced by the NTBC or its metabolites. NTBC and its metabolites influenced L-TYR catabolism differently. Particularly significant changes were found in the content of epinephrine and normetanephrine: in the plant tissues exposed to NTBC, an increase in the content of these neurotransmitters was found (+42%), whereas in the plant treated with 2-amino-4-(trifluoromethyl)benzoic acid or 2-nitro-4-(trifluoromethyl)benzoic acid a decrease in concentration (-39% and 55%, respectively) was observed. Cyclohexane-1,3-dione does not influence epinephrine and normetanephrine concentration. The conclusions of this study provide a platform for expanded research on the causes of side effects of NTBC treatment.

Keywords: Catabolism; Catecholamines; NTBC; Non-targeted analysis.

MeSH terms

  • Chromatography, Liquid
  • Cyclohexanones
  • Humans
  • Nitrobenzoates*
  • Tandem Mass Spectrometry*
  • Tyrosine

Substances

  • Cyclohexanones
  • Nitrobenzoates
  • Tyrosine
  • nitisinone