Person Foreground Segmentation by Learning Multi-Domain Networks

IEEE Trans Image Process. 2022:31:585-597. doi: 10.1109/TIP.2021.3097169. Epub 2021 Dec 22.

Abstract

Separating the dominant person from the complex background is significant to the human-related research and photo-editing based applications. Existing segmentation algorithms are either too general to separate the person region accurately, or not capable of achieving real-time speed. In this paper, we introduce the multi-domain learning framework into a novel baseline model to construct the Multi-domain TriSeNet Networks for the real-time single person image segmentation. We first divide training data into different subdomains based on the characteristics of single person images, then apply a multi-branch Feature Fusion Module (FFM) to decouple the networks into the domain-independent and the domain-specific layers. To further enhance the accuracy, a self-supervised learning strategy is proposed to dig out domain relations during training. It helps transfer domain-specific knowledge by improving predictive consistency among different FFM branches. Moreover, we create a large-scale single person image segmentation dataset named MSSP20k, which consists of 22,100 pixel-level annotated images in the real world. The MSSP20k dataset is more complex and challenging than existing public ones in terms of scalability and variety. Experiments show that our Multi-domain TriSeNet outperforms state-of-the-art approaches on both public and the newly built datasets with real-time speed.

MeSH terms

  • Algorithms*
  • Humans
  • Image Processing, Computer-Assisted*