SARS-CoV-2 serology: Validation of high-throughput chemiluminescent immunoassay (CLIA) platforms and a field study in British Columbia

J Clin Virol. 2021 Sep:142:104914. doi: 10.1016/j.jcv.2021.104914. Epub 2021 Jul 16.

Abstract

Background: SARS-CoV-2 antibody testing is required for estimating population seroprevalence and vaccine response studies. It may also increase case identification when used as an adjunct to routine molecular testing. We performed a validation study and evaluated the use of automated high-throughput assays in a field study of COVID-19-affected care facilities.

Methods: Six automated assays were assessed: 1) DiaSorin LIAISONTM SARS-CoV-2 S1/S2 IgG; 2) Abbott ARCHITECTTM SARS-CoV-2 IgG; 3) Ortho VITROSTM Anti-SARS-CoV-2 Total; 4) VITROSTM Anti-SARS-CoV-2 IgG; 5) Siemens SARS-CoV-2 Total Assay; and 6) Roche ElecsysTM Anti-SARS-CoV-2. The validation study included 107 samples (42 known positive; 65 presumed negative). The field study included 296 samples (92 PCR positive; 204 PCR negative or not PCR tested). All samples were tested by the six assays.

Results: All assays had sensitivities >90% in the field study, while in the validation study, 5/6 assays were >90% sensitive and DiaSorin was 79% sensitive. Specificities and negative predictive values were >95% for all assays. Field study estimated positive predictive values at 1-10% disease prevalence were 100% for Siemens, Abbott and Roche, while DiaSorin and Ortho assays had lower PPVs at 1% prevalence, but PPVs increased at 5-10% prevalence. In the field study, addition of serology increased diagnoses by 16% compared to PCR testing alone.

Conclusions: All assays evaluated in this study demonstrated high sensitivity and specificity for samples collected at least 14 days post-symptom onset, while sensitivity was variable 0-14 days after infection. The addition of serology to the outbreak investigations increased case detection by 16%.

Keywords: COVID-19; Outbreak investigation; SARS-CoV-2; Serologic testing.

MeSH terms

  • Antibodies, Viral
  • British Columbia
  • COVID-19*
  • Humans
  • Immunoassay
  • SARS-CoV-2*
  • Sensitivity and Specificity
  • Seroepidemiologic Studies

Substances

  • Antibodies, Viral