Optimization of Virtual Shack-Hartmann Wavefront Sensing

Sensors (Basel). 2021 Jul 9;21(14):4698. doi: 10.3390/s21144698.

Abstract

Virtual Shack-Hartmann wavefront sensing (vSHWS) can flexibly adjust parameters to meet different requirements without changing the system, and it is a promising means for aberration measurement. However, how to optimize its parameters to achieve the best performance is rarely discussed. In this work, the data processing procedure and methods of vSHWS were demonstrated by using a set of normal human ocular aberrations as an example. The shapes (round and square) of a virtual lenslet, the zero-padding of the sub-aperture electric field, sub-aperture number, as well as the sequences (before and after diffraction calculation), algorithms, and interval of data interpolation, were analyzed to find the optimal configuration. The effect of the above optimizations on its anti-noise performance was also studied. The Zernike coefficient errors and the root mean square of the wavefront error between the reconstructed and preset wavefronts were used for performance evaluation. The performance of the optimized vSHWS could be significantly improved compared to that of a non-optimized one, which was also verified with 20 sets of clinical human ocular aberrations. This work makes the vSHWS's implementation clearer, and the optimization methods and the obtained results are of great significance for its applications.

Keywords: Shack–Hartmann wavefront sensing; aberration measurement; digital wavefront processing; parameter optimization; wavefront sensing.

MeSH terms

  • Algorithms*
  • Eye*
  • Face
  • Humans
  • Rotation