Computational Study of Triphosphine-Ligated Cu(I) Catalysts for Hydrogenation of CO2 to Formate

J Phys Chem A. 2021 Aug 5;125(30):6600-6610. doi: 10.1021/acs.jpca.1c04050. Epub 2021 Jul 23.

Abstract

The catalyzed hydrogenation of CO2 to formate via a triphosphine-ligated Cu(I) was studied computationally at the density functional theory level in the presence of a self-consistent reaction field. Of the four functionals benchmarked, M06 was generally in the best agreement with the available experimentally estimated values. Two bases, DBU and TBD, were studied in the context of two proposed mechanisms in the MeCN solvent. Activation of H2 was explored by using LCu(DBU)+ to form LCuH. Dissociation of a ligand arm results in higher barriers to form the key hydride complex, LCuH. The preferred mechanism passes through a transition state, where the H2 has one H atom interacting with the copper center and the other H atom interacting with the N atom of the base, similar to H2 insertion into a frustrated Lewis pair. There is no significant difference between the choice of a base, DBU or TBD, with respect to the proposed mechanisms. We propose that the experimentally observed differences between DBU and TBD reactivities for this mechanism are due to off-pathway changes.