Nanoparticle-Aided Nanoreactor for Nanoproteomics

Anal Chem. 2021 Aug 3;93(30):10568-10576. doi: 10.1021/acs.analchem.1c01704. Epub 2021 Jul 23.

Abstract

Large-scale bottom-up proteomics of few even single cells is crucial for a better understanding of the roles played by cell-to-cell heterogeneity in disease and development. Novel proteomic methodologies with extremely high sensitivity are required for few even single-cell proteomics. Sample processing with high recovery and no contaminants is one key step. Here we developed a nanoparticle-aided nanoreactor for nanoproteomics (Nano3) technique for processing low-nanograms of mammalian cell proteins for proteome profiling. The Nano3 technique employed nanoparticles packed in a capillary channel to form a nanoreactor (≤30 nL) for concentrating, cleaning, and digesting proteins originally in a lysis buffer containing sodium dodecyl sulfate (SDS), followed by nanoRPLC-MS/MS analysis. The Nano3 method identified a 40-times higher number of proteins based on MS/MS from 2-ng mouse brain protein samples compared to the SP3 (single-pot solid-phase-enhanced sample preparation) method, which performed the sample processing using the nanoparticles in a 10 μL solution in an Eppendorf tube. The data indicates a drastically higher sample recovery of the Nano3 compared to the SP3 method for processing mass-limited proteome samples. In this pilot study, the Nano3 method was further applied in processing 10-1000 HeLa cells for bottom-up proteomics, producing 441 ± 263 (n = 4) (MS/MS) and 983 ± 292 (n = 4) [match between runs (MBR)+MS/MS] protein identifications from only 10 HeLa cells using a Q-Exactive HF mass spectrometer. The preliminary results render the Nano3 method a useful approach for processing few mammalian cells for proteome profiling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • HeLa Cells
  • Humans
  • Nanoparticles*
  • Nanotechnology
  • Pilot Projects
  • Proteome
  • Proteomics*
  • Tandem Mass Spectrometry

Substances

  • Proteome