Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade II Gliomas

Front Oncol. 2021 Jul 6:11:616740. doi: 10.3389/fonc.2021.616740. eCollection 2021.

Abstract

Purpose: The present study aimed to preoperatively predict the status of 1p/19q based on radiomics analysis in patients with World Health Organization (WHO) grade II gliomas.

Methods: This retrospective study enrolled 157 patients with WHO grade II gliomas (76 patients with astrocytomas with mutant IDH, 16 patients with astrocytomas with wild-type IDH, and 65 patients with oligodendrogliomas with mutant IDH and 1p/19q codeletion). Radiomic features were extracted from magnetic resonance images, including T1-weighted, T2-weighted, and contrast T1-weighted images. Elastic net and support vector machines with radial basis function kernel were applied in nested 10-fold cross-validation loops to predict the 1p/19q status. Receiver operating characteristic analysis and precision-recall analysis were used to evaluate the model performance. Student's t-tests were then used to compare the posterior probabilities of 1p/19q co-deletion prediction in the group with different 1p/19q status.

Results: Six valuable radiomic features, along with age, were selected with the nested 10-fold cross-validation loops. Five features showed significant difference in patients with different 1p/19q status. The area under curve and accuracy of the predictive model were 0.8079 (95% confidence interval, 0.733-0.8755) and 0.758 (0.6879-0.8217), respectively, and the F1-score of the precision-recall curve achieved 0.6667 (0.5201-0.7705). The posterior probabilities in the 1p/19q co-deletion group were significantly different from the non-deletion group.

Conclusion: Combined radiomics analysis and machine learning showed potential clinical utility in the preoperative prediction of 1p/19q status, which can aid in making customized neurosurgery plans and glioma management strategies before postoperative pathology.

Keywords: 1p/19q co-deletion; low grade glioma; machine learning; nested cross-validation; radiomics.