In-Plane Anisotropic Nonlinear Optical Properties of Two-Dimensional Organic-Inorganic Hybrid Perovskite

J Phys Chem Lett. 2021 Jul 29;12(29):7010-7018. doi: 10.1021/acs.jpclett.1c01890. Epub 2021 Jul 21.

Abstract

Two-dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) with superior nonlinear optical (NLO) properties show great versatility in frequency upconversion applications. Optical anisotropy plays an indispensable role in interpreting the interactions between incoming photons and crystal structure. Recently, the in-plane anisotropic NLO properties of 2D OIHPs have been reported and attracted much attention. However, the structure-related NLO anisotropy of the 2D OIHP framework is not well-established. Here, NLO properties of (C6H5(CH2)2NH3)2PbI4 (PEPI), (C6H11NH3)2PbI4 (C6H11), and (C4H9NH3)2PbI4 (C4PI) were systematically studied to interrogate the correlation between the in-plane anisotropic NLO responses and its lattice structure. In-plane nonparametric NLO responses, e.g., two-photon photoluminescence (2PPL) and three-photon photoluminescence (3PPL), manifest similar anisotropy configurations for PEPI, C6H11, and C4PI regardless of aromatic, cyclic, or linear organic molecules; however, the anisotropies of THG signals are strongly dependent on the specific crystal structures of the individual flakes, and they are much higher than that of the multiphoton excited photoluminescence.