Preparation of Polyurea Microcapsules by Interfacial Polymerization of Isocyanate and Chitosan Oligosaccharide

Materials (Basel). 2021 Jul 5;14(13):3753. doi: 10.3390/ma14133753.

Abstract

(2-((1-(4-chlorophenyl)-1H-pyrazol-3-yl)oxy)-N-(3,4-dichlorophenyl)-propanamide) is a new oil-soluble compound with good fungicidal activity against Rhizoctonia solani. Chitosan oligosaccharide (COS) is the depolymerization product of chitosan and can be developed into biological pesticides, growth regulators, and fertilizers due to its various bioactivities. COS is an oligomer of β- (1 → 4)-linked d -glucosamine and can be taken as a polyamine. In this study, microcapsules were prepared by interfacial polymerization of oil-soluble methylene diphenyl diisocyanate and water-soluble COS. The effects of several key preparation parameters, e.g., emulsifier dosage, agitation rate during emulsification, and core/shell ratio, on properties of the microcapsules such as the encapsulation efficiency, particle size, and size distribution were investigated. The microcapsules were characterized by infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, etc., and the encapsulation efficiency and release behaviors were investigated. The results show that the microcapsules have a smooth surface and 93.3% of encapsulation efficiency. The microcapsules showed slow-release behavior following a first-order kinetic equation, and the accumulative release rates of the microcapsules with core/shell mass ratios of 8.0/4.0, 8.0/5.0, and 8.0/6.0, were 95.5%, 91.4%, and 90.1%, respectively, on day 30. Due to many high biological activities, biodegradability, and the pure nature of COS, microcapsules formed from COS are promising for applications in controlled release of pesticides, growth regulators, and fertilizer.

Keywords: chitosan oligosaccharide; microcapsule; pesticides; polyurea; slow release.