One-Pot Synthesis of High-Performance Tin Chalcogenides/C Anodes for Li-Ion Batteries

ACS Omega. 2021 Jun 30;6(27):17391-17399. doi: 10.1021/acsomega.1c01647. eCollection 2021 Jul 13.

Abstract

Tin chalcogenides are considered as promising anode materials for lithium-ion batteries (LIBs) due to their high theoretical lithium-storage capacity. Herein, we have successfully synthesized the composites of tin chalcogenides and graphite, that is, SnS/C, SnSe/C, and SnS0.5Se0.5/C, via a simple one-pot solid-state method. During the electrochemical test, they exhibit excellent lithium-storage ability and cyclic performance as the anode electrodes of LIBs due to the introduction of carbon. In particular, (i) SnS/C displayed a high specific capacity of 875 mAh g-1 at 0.2 A g-1 over 200 cycles; (ii) SnSe/C presents 734 mAh g-1 at 0.2 A g-1 after 100 cycles, and it delivers 690 mAh g-1 at 1.0 A g-1 over 300 cycles; and (iii) the SnS0.5Se0.5/C composite electrode delivers a specific capacity of 643 mAh g-1 at 0.5 A g-1 over 150 cycles. Furthermore, another series of tin-based composites have also been successfully fabricated (i.e., Sn/C, SnS2/C, SnSe2/C, and SnTe/C), showing the general applicability of the synthetic route applied here. Our synthetic approach demonstrates a promising route for the large-scale production of high-performance tin chalcogenides/C anode materials for LIBs and other battery systems (e.g., Na-ion and K-ion batteries).